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Chapter 1 

Warm Up Problems 

1. Problem 
It takes 20 minutes to fll a bath tub by running the hot water tap. It 
takes 15 minutes to fll the same bath tub by running the cold water tap. 
It takes 10 minutes to drain the bath tub by removing the plug. 

If both taps are running and the plug is removed, how long will it take to 
fll the bath tub? 

Hint 
This is a very similar question to the problem about Hayley and Rob 
painting a house from Workbook 1, so any techniques used to tackle that 
question will come in handy here. In particular, a rate of fow problem 
such as this is very similar to combining resistors in parallel. 

Solution 1 
Recognising that this is a rate problem, the rate at which the hot water 
tap flls up the bath tub is 1/20; the cold water tap rate is 1/15; and 
removing the plug drains the bath at a rate of 1/10. Therefore, when 
both taps are running and the plug is removed: 

1 1 1 1 
rate = = + − (1.1)

time 20 15 10 
3 4 6 

= + − (1.2)
60 60 60 
1 

= (1.3)
60 

This means that the bath takes 60 minutes to fll. 

Solution 2 
Slightly more rigorously: let the bath tub have a volume V . Let: 

‹ h be the rate at which hot water fows into the bath 
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‹ c be the rate at which cold water fows into the bath 

‹ d be the rate at which water is drained from the bath 

Note that h, c and d will all have units of volume of water per unit time. 
From the information given in the question, this means that 

20h = 15c = 10d = V (1.4) 

and so h = V/20, c = V/15 and d = V/10. If both taps are running and 
the plug is removed, this corresponds to a rate of h + c − d, which means 
that the bath tub flls up at a rate 

V V V V 
h + c − d = + − = (1.5)

20 15 10 60 

Rearranging this equation gives 

60(h + c − d) = V (1.6) 

and so it takes 60 minutes for the bath tub to fll up. 

2. Problem 
Find the height of the triangle in Figure 1.1 if a = 9 cm, b = 16 cm and 
c = 25 cm. Note: the triangle is not drawn to scale! 

Figure 1.1: A triangle with lengths a = 9 cm, b = 16 cm and c = 25 cm. 

Hint 
In theory, this problem could be solved by a primary school student! Do 
not be tricked into recognising a 3-4-5 Pythagorean triple. 

Solution 
Since a + b = c, the height is 0. If you were to try to draw the triangle, it 
would end up being a straight line. 

3. Problem 
A family exercise their dog in the following way: 

‹ The parents sit on a bench while the children walk to a rock a distance 
D away, calling to the dog as they walk. 

‹ The parents and the children alternately call the dog, who runs from 
one group to the other and back again. 
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‹ The children then walk back to their parents, still calling the dog on 
their way back. 

If the dog travels at a constant speed vd and the children at a constant 
speed vc (with vc < vd), calculate how far the dog runs in total. 

Hint 
Thinking back to the question about the pirate, ninja and parrot from 
Workbook 1, there is a similarly quick way to solve this – do not try to 
break it down into too many steps. Nothing more than GCSE Physics 
and clear thinking is required. Note that all the speeds are constant. 

Solution 
The dog runs at a constant speed for the time it takes the children to 
walk to the rock and back again. This time is given by the total distance 
travelled divided by their speed, or 2D/vc. Hence the distance that the 
dog travels is: 

2D vd
distance = speed × time = vd × = 2D (1.7) 

vc vc 

4. Problem 
There are 3 cards hidden under a cloth on a table. It is known that one 
card is white on both sides, one is black on both sides and the other is 
black on one side and white on the other. 

I select a card at random and its upper face is white. What are the odds 
that its other side is also white? 

Hint 
If you’re familiar with the classic Monty Hall problem, similar thinking 
should help here. You may think that you have an equal chance of picking 
any of the three cards – this was true, but looking does more than just 
eliminate the black card. It may help to label each side from 1 to 6 and 
assign odds that way. 

Solution 
Let the white-white card have sides W1 and W2, the black-black card have 
sides B1 and B2 and the white-black card have sides W3 and B3. With 
no knowledge other than the fact that I have picked a white side, the side 
that I have picked could either be W1, W2 or W3: 

‹ If it is W1 then the other side is also white 

‹ If it is W2 then the other side is also white 

‹ If it is W3 then the other side is black 

So the probability that the other side is also white is 2/3. 

There are a couple of other ways of thinking about the problem: 

‹ It is more likely that I have selected the white-white card, since half 
the time the white-black card will have its black face up 
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‹ Consider running the game twice, with all cards fipped the second 
time around. Removing the cloth, there are three white cards. It is 
equally likely that you have selected either of these. Of these, two 
are the white-white card. So there is a 2/3 chance that the other side 
is also white. 

5. Problem 
Imagine that you have a height h and are standing at a distance d from 
a mirror, looking at your own refection. In order to be able to see a 
full-length view of yourself, the minimum size of the plane mirror must 
be: 

(a) h/4 

(b) h/2 

(c) 3h/4 

(d) h 

(e) Depends on the exact value of d 

Hint 
Draw a ray diagram. How can you see both your head and your feet in a 
mirror? Remember the law of refection. 

Solution 
First we will consider what happens when I look at my own refection in a 
mirror of height h. Figure 1.2 shows a person of height h looking at their 
own refection in a mirror of height h. 

Figure 1.2: A person of height h looking at their refection in a mirror of height 
h. 

In order for me to see a body part, light rays have to hit the body part, 
refect of the mirror and reach my eyes. The limiting factor are the 
rays from my feet, which refect of the mirror at a distance halfway up 
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the mirror and then reach my eyes. Therefore, every part of the mirror 
underneath this point is redundant. The height of the mirror is therefore 
h/2 and is independent of the distance d I am away from it. 

6. Problem 
Zoe wishes to ‘spear’ a fsh with a laser – that is, she wants to shine a 
laser onto a lake and have the light beam hit a fsh below the surface of 
the water. Should she aim the laser beam above, below, or directly at the 
observed fsh to make a direct hit? 

Hint 
First think about where Zoe would need to aim if she were throwing a 
physical spear into the water and wanted to hit the fsh directly. How 
does shining a laser beam afect the physics involved? 

Solution 
Figure 1.3 shows a diagram of the situation. 

Figure 1.3: A diagram of Zoe aiming her laser at the fsh. 

To Zoe, the fsh appears slightly above where it physically is in the water 
due to the refraction of light. If Zoe were throwing a physical spear, she 
would have to compensate for this refraction of light and aim below the 
observed fsh. But since the ‘spear’ in this question is an actual beam of 
light, she should aim directly at the fsh. The laser will refract towards 
the fsh in exactly the same way that light bouncing of the fsh refracts 
towards Zoe’s eyes. 
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Chapter 2 

Circular Motion 

2.1 Introductory Problems 

1. Problem 
The faster I swing a pendulum around my head, the closer the string gets 
to being perfectly horizontal. 

(a) With the aid of a clear diagram, explain why this is the case. 

(b) How fast must the pendulum mass be travelling for the string to be 
exactly horizontal? 

Hint 
Draw a free body diagram to show the forces acting on the mass. There 
are only two, but you also know the direction of the resultant force. 

Solution 

(a) Consider Figure 2.1. 

The tension in the string provides the centripetal force required to 
maintain circular motion. Resolving forces horizontally: 

2mv 
T cos θ = (2.1) 

r 

where mv2/r is the centripetal force. Likewise, to maintain vertical 
equilibrium we require that 

T sin θ = mg (2.2) 

Taking equation 2.2 and dividing it by equation 2.1 then yields 

rg 
tan θ = (2.3) 

v2 

As v increases, tan θ decreases, meaning that θ also decreases. Since 
a decrease in θ corresponds to the string becoming more horizontal, 
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Figure 2.1: A diagram showing the forces acting on the pendulum mass. 

the faster I swing a pendulum around my head, the closer the string 
gets to being perfectly horizontal. 

(b) For the string to be exactly horizontal, we require that θ = 0. For 
non-zero r and g this means the pendulum mass must be travelling 
infnitely fast! This can also be seen from the diagram: there must 
always be a vertical component of tension that is equal to the weight, 
and so there must always be an angle θ ̸= 0. 

2. Problem 
Assume that the Earth is a perfect sphere of radius 6400 km, spinning on 
its axis. When a person stands on some weighing scales at the North Pole, 
the scales read 800 N. 

We will now think about what would happen if the person were to stand 
on the scales at diferent points around the globe. 

(a) First qualitatively: if the person were to weigh themselves at the 
equator, would the reading on the scales be higher, lower, or the 
same value? 

(b) Now quantitatively: calculate the diference in the reading on the 
scales if the person were to weigh themselves at the equator compared 
to the reading at the North Pole. 

(c) What would the reading on the scales be if the person were to weigh 
themselves in Oxford, which has a latitude of 51.8◦ North? 

Hint 

(a) Recall that scales work by measuring the contact force that they 
provide on the person standing on them. Draw a free body diagram 
for the person. Consider whether or not the person is accelerating in 
each scenario and use Newton’s laws. 

8 



             
     

                 
             

          
           
       

 

              
             

      
              
            

            
            

     
            

            
            

 

         

 
     

 

                
            

  

 
      

 
 

     
 

  

    
  

              
              

               
        

  

    
  

                  
                 

 

(b) Remember that the centripetal force is the resultant force – it is 
always provided by something else. 

(c) The equator is at a latitude of 0◦ and the North Pole is at a latitude 
of 90◦ . Have you drawn a cross-section of the Earth and included 
a right-angled triangle? In which direction does your weight and 
contact force act? Do you need an additional force? What would 
happen if you were on an ice-rink? 

Solution 

(a) There is no centripetal force acting on a person standing at the poles, 
but there is such a centripetal force at the equator. This is the 
resultant force and points radially inwards. 

The only two forces acting on the person are their weight W = mg 
1and the normal reaction force N . Whilst these two balance when the 

person stands at the pole, when at the equator the normal reaction 
force must be less than the weight, such that the resultant force 
provides the inwards centripetal force. 

By Newton’s third law, the normal reaction force is provided by the 
scales and hence the scales are pushed down with this same force. 
Therefore the reading would be lower at the equator than at the 
poles. 

(b) Since the resultant force provides the centripetal force: 

2mv 
W − N = (2.4) 

r 

Using the facts that v = ωr and ω = 2π/T , where T is the period 
of circular motion, this means that the normal reaction force at the 
equator is 

m 2
N = W − (ωr) (2.5) 

r � �2
2π 

= W − mr × (2.6)
T 

Wr 4π2 

= W − × (2.7) 
g T 2 

where we have substituted m = W/g for the mass of the person. This 
is to be contrasted to the normal reaction force at the pole, which is 
just N = W = mg due to the lack of any centripetal force. Hence 
the diference between the two readings ∆N is 

Wr 4π2 

∆N = × (2.8) 
g T 2 

1Note that this is only the case at the pole and the equator. At any other latitude there 
will also be a frictional force – see the solution to part (c) for a fuller explanation. 
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The period T of the circular motion is just the rotation period of the 
Earth: 24 hours or 86400 seconds. W = 800 N, g = 9.81 ms−2 and 
r = 6400 km is the radius of the Earth. Plugging all of this in: 

800 × 6.4 × 106 

∆N = × 4π2864002 ≈ 2.8 N (2.9) 
9.81 

(c) Consider Figure 2.2. 

Figure 2.2: A diagram showing the forces acting on the person in Oxford. 

Note that the radius of circular motion is now r = R cos θ where R 
is the radius of the Earth, since the person standing at 51.8◦ North 
travels a smaller circle in 24 hours due to the Earth’s rotation than 
a person standing at the equator. 

The centripetal force acts along this distance r. However, the forces 
mg and N act along the same line (radially inwards and outwards 
towards and away from the centre of the Earth), so there is no way to 
resolve these two forces in order to provide a centripetal force in the 
correct direction. This means that there must exist a frictional force 
F , as indicated in Figure 2.2, in order for there to be an inwards-
pointing centripetal force. 

Resolving forces vertically: 

N sin θ + F cos θ = mg sin θ (2.10) 

where θ = 51.8◦ is the latitude of the person. Rearranging: 

F = (mg − N) tan θ (2.11) 

Resolving forces horizontally: 

2mv 
= mω2 r = mg cos θ + F sin θ − N cos θ (2.12) 

r 
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Substituting r = R cos θ and dividing through by cos θ gives 

mω2R = mg + F tan θ − N (2.13) 

Substituting equation 2.11 into equation 2.13 gives 

mω2R = mg + (mg − N) tan2 θ − N (2.14) 

Rearranging: 

mω2R = mg(tan2 θ + 1) − N(tan2 θ + 1) (2.15) 

and so 

mω2R 
N = mg − (2.16)

(tan2 θ + 1) 

= mg − mω2R cos 2 θ (2.17) 

where we have used the fact that 

tan2 θ + 1 = sec 2 θ = 
1 

(2.18) 
cos2 θ 

Replacing m with W/g and once again using the fact that ω = 2π/T , 
equation 2.17 becomes 

W 4π2 
2 θN = W − × × R cos (2.19) 

g T 2 

= 800 − 
800 × 

4π2 

× 6.4 × 106 × cos 2 (51.8◦) (2.20)
9.81 864002 

≈ 798.9 N (2.21) 

3. Problem 
The Earth is actually an oblate spheroid – that is, its equatorial diameter 
is larger than its North-to-South diameter. 

(a) How would this afect the person’s weight at the equator and at the 
poles? 

(b) Suggest why the Earth is this shape. 

Hint 

(a) It is helpful to know Newton’s law of gravitation: 

GMm 
F = (2.22) 

r2 

How does the gravitational feld strength vary with distance from the 
centre of mass? 
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(b) Have you ever seen a chef making a pizza base? Similar physics is 
involved here. 

Solution 

(a) There are two factors to consider here: 

i. If the person were at the equator, they would be further away 
from the centre of the Earth (which is the centre of mass of the 
Earth) than if they were at the poles. This means that the force 
of gravity the person would experience at the equator would be 
weaker, since 

GMm 
mg = (2.23) 

r2 

ii. If the person were at the equator, the larger radius would mean 
that there must be a larger centripetal force to keep the period 
the same, since 

Fc = mω2 r (2.24) 

where Fc is the centripetal force. 

Both of these efects would decrease the weight recorded on the mass 
balance at the equator. However, the frst efect would physically 
decrease the person’s weight. 

(b) The Earth is an oblate spheroid and bulges out along the equator 
due to its rotation. The centrifugal force due to this rotation causes 
the Earth to have this shape. 

You may have heard that the centrifugal force is a fctitious force. 
This is true, but it all depends on your reference frame. 

In an inertial frame of reference (that is, a frame of reference which is 
not accelerating), fctitious forces such as the centrifugal and Coriolis 
forces don’t exist. However, the surface of the Earth is not an inertial 
frame of reference, because it is continuously accelerating as it rotates 
around the Earth’s centre. In this situation, it makes sense to talk 
about centrifugal forces. 

If you were spinning quickly on a carousel in a playground, you would 
feel a force (the centrifugal force) pushing you outwards away from 
the carousel’s centre, and this force would become stronger the faster 
the carousel rotated. In a similar way, the Earth’s rotation causes 
its equator to bulge out more than the poles, since the equator spins 
faster than the poles. 

2.2 Further Problems 

4. Problem 
Determine the length of a day in which a person standing on the equator 
would appear weightless. 
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Hint 
What is the condition on the contact force that leads to the experience of 
weightlessness? How is the resultant force dependent on the period? 

Solution 
From a previous problem, we know that it is the diference between the 
weight and the normal reaction force (i.e. the resultant force) that provides 
the centripetal force: 

4π2mr 
mg − N = mω2 r = 

T 2 
(2.25) 

where we have substituted ω = 2π/T . The condition for weightlessness is 
for the normal reaction force to vanish, so setting N = 0 and rearranging 
for T: r 

r 
T = 2π (2.26) 

g r 
6.4 × 106 

= 2π (2.27)
9.81 

≈ 1.4 hours (2.28) 

5. Problem 
Newton’s cannon is a thought-experiment whereby a cannonball is fred 
horizontally from a high mountain top at varying speeds. If the cannonball 
is fred at or above some critical velocity v, the surface of the Earth will 
curve away faster than the ball falls back to Earth – the cannonball would 
now be in orbit. 

(a) Determine the orbital velocity. You may assume its orbital radius is 
6400 km and ignore air resistance. 

(b) Hence, or otherwise, determine the period of the orbit. 

Hint 
If there is only one force acting on an object in a circular orbit, this force 
must also be the centripetal force. 

Solution 

(a) The only force acting on the ball is gravity, so this provides the 
centripetal force: 

2GMm mv 
= (2.29) 

r2 r 
where m is the mass of the cannonball and M is the mass of the 
Earth. Rearranging for the velocity yields r 

GM 
v = (2.30) 

r 
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If we don’t know what the mass of the Earth (6.0× 1024 kg for future 
reference) we can substitute in the defnition of the gravitational feld 
strength 

GM 
g = (2.31) 

r2 

to get 

v = 
√ 
gr = 

p 
9.81 × 6.4 × 106 ≈ 7.9 kms−1 (2.32) 

(b) We know that v = ωr and ω = 2π/T . This means that 

2πr 2π × 6.4 × 106 

T = = ≈ 1.4 hours (2.33) 
v 7.9 × 103 

Food for thought: is it a coincidence that this is the same length of 
time as the length a day would have to be for a person standing on 
the equator to appear weightless? If not, why not? 

6. Problem 
A penny dropped from the top of the Burj Khalifa (height 828 m) in Dubai 
(latitude 25◦ North) will miss a target directly below it. Why? By what 
distance will the penny miss the target? 

Hint 
This is a synoptic question – circular motion and...what else is involved? 
Can you work out the diference in linear speed between the top and 
bottom of the building? 

Solution 
At the top of the Burj Khalifa you are travelling in a (slightly) larger 
circle around the globe as the Earth rotates once every 24 hours than if 
you were at the bottom of the building. Hence, people at the top of the 
Burj Khalifa are travelling faster. 

The size of this circle which you travel around the globe depends on your 
latitude, as shown in Figure 2.3. Whilst at the equator you travel a circle 
of radius R, at a latitude of θ you travel a circle of radius R cos θ. At 
the poles, where θ = 90◦ , you don’t travel at all since the poles are not 
rotating! 

Ignoring air resistance, a penny which falls from the top of the Burj Khalifa 
to the bottom has an initial horizontal velocity relative to the ground, and 
so will miss a target placed directly below it. 

The linear velocity at the top of the building is given by 

2π(R + h) cos θ 
vtop = (2.34)

T 

where R is the radius of the Earth, h is the height of the Burj Khalifa, T 
is one rotation period of the Earth and θ is the latitude. 
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Figure 2.3: A diagram (not to scale!) showing the Burj Khalifa on the Earth. 
An object’s latitude θ determines the radius R cos θ of its circular motion due 
to the Earth’s rotation. 

The linear velocity at the bottom of the building is given by 

2πR cos θ 
vbase = (2.35)

T 

This means that the relative velocity between the top and bottom of the 
building is 

2πh cos θ 
∆v = vtop − vbase = (2.36)

T 
2π × 828 × cos 25◦ 

= ≈ 5.457 cms−1 (2.37)
86400 

In other words, the penny is always travelling approximately 5.5 cms−1 

faster horizontally than the target on the ground. 

Assuming g to be constant, we can calculate the time it takes for the 
penny to fall using a standard SUVAT equation. In the vertical direction: 

1 2 s = ut + at (2.38)
2 

The penny is dropped with an initial vertical velocity u = 0 and so r r 
2s 2 × 828 

t = = ≈ 13 s (2.39) 
a 9.81 
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Finally, using distance = speed × time, the penny will be 

5.457 × 13 ≈ 70.9 cm (2.40) 

ahead of its mark. 

2.3 Extension Problems 

7. Problem 
A smooth marble is initially at rest at the top of a much larger smooth 
hemisphere of radius r. The marble is given a slight nudge and begins to 
slide down the hemisphere. 

(a) At what angle from the vertical will the marble leave the surface of 
the hemisphere? 

(b) How far away from the base will the marble land? 

Hint 

(a) What do you know about the contact force at the point of interest? 

(b) Have you resolved your initial velocity into useful components? The 
marble in a fshbowl question from Workbook 1 may be a useful 
guide. 

Solution 

(a) Figure 2.4 illustrates the problem. 

Figure 2.4: A smooth marble sliding down a smooth hemisphere. 

Although the velocity of the marble is not constant, since it follows 
a circular path as it rolls down the hemisphere, there must exist a 
centripetal force at any instant. Balancing forces horizontally: 

2mv 
mg cos θ − N = (2.41) 

r 
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Now we can apply the conservation of energy. If we take the bottom of 
the hemisphere to be our level of zero gravitational potential energy, 
then the marble starts of with no kinetic energy and a potential 
energy equal to mgr, since it starts of a perpendicular distance r 
above the ground. By the conservation of energy, the marble must 
always have a total energy ET = mgr. 

At a given point on the hemisphere, the marble’s potential energy 
is given by mg(r − h) = mgr cos θ whilst its kinetic energy is just 
mv2/2. This means that the marble’s total energy is 

1 2ET = mgr cos θ + mv = mgr (2.42)
2 

where the last equality holds due to the conservation of energy. Re-
arranging: 

2mv 
2mg(1 − cos θ) = (2.43) 

r 
Substituting equation 2.41 into equation 2.43 gives 

2mg − 2mg cos θ = mg cos θ − N (2.44) 

and so 
N = 3mg cos θ − 2mg = mg(3 cos θ − 2) (2.45) 

At the instant when the ball leaves the surface, there is no normal 
reaction force and so N = 0. From equation 2.45, this means that 

3 cos θ − 2 = 0 (2.46) 

and so fnally � � 
−1θ = cos 

2 ≈ 48◦ (2.47)
3 

(b) Figure 2.5 illustrates the problem. 

After leaving the surface of the hemisphere, the marble will now be 
a projectile and take a parabolic path to the ground below. We can 
fnd its velocity at the point when it leaves the surface using the 
conservation of energy equation 2.43: 

2 pmv 
2mg(1 − cos θ) = → v = 2gr(1 − cos θ) (2.48) 

r 

We know the value of cos θ at which the marble leaves the surface 
from equation 2.46: cos θ = 2/3. Plugging this value in gives: r 

2gr 
v = (2.49)

3 

This is the marble’s initial velocity after leaving the surface of the 
hemisphere. It might be helpful to relabel this velocity as u since it 
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Figure 2.5: A smooth marble leaving the surface of the smooth hemisphere. 

is an initial velocity, and resolving this into horizontal and vertical 
components gives: r 

2gr 
u = (2.50)

3 

ux = u cos θ (2.51) 

uy = u sin θ (2.52) 

Note that for this question we will adopt the convention that y in-
creases in the downwards direction. You don’t have to do this, but it 
may make life slightly easier. (If you don’t do this, then uy = −u sin θ 
and (later on) sy = −2r/3.) 
Referring back to the diagram, we know that the base of the triangle 
is 2r/3 since cos θ = 2/3. Using Pythagoras, we can fnd the height 
x of the triangle: � �2 √ 

2 2 r = x + 
2r 
3 

→ x = 
5 
r 

3 
(2.53) 

√ 
With this information, we can now fgure out that sin θ = 5/3. The 
fact that we know sin θ and cos θ means we can work out explicit 
expressions for ux and uy : r r 

2gr 2 8gr 
ux = u cos θ = × = (2.54)

3 3 27 r √ r 
2gr 5 10gr 

uy = u sin θ = × = (2.55)
3 3 27 

As we did in Workbook 1, it is often useful to create a table of the 
diferent variables involved in a projectile problem. Table 2.1 is an 
example of one way of doing this. 
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2 sx = ? sy = rq 3q
8gr 10gr ux = uy = 27 27q 

vx = 
8gr vy = ?27 

ax = 0 ay = +g 
t = ? t = ? 

Table 2.1: A table of the diferent variables relevant to the Marble rolling of a 
Hemisphere problem. 

sy = 2/3 since this is the vertical distance the marble has to travel 
to hit the ground. We assume no air resistance and so there are no 
horizontal accelerations (hence ax = 0 and vx = ux), whilst the only 
acceleration in the vertical direction is provided by gravity (which is 
positive due to our choice of coordinate system). 
From the vertical variables in Table 2.1 we can fnd the time t that 
it takes for the marble to hit the ground using a standard SUVAT 
equation: 

1 2 sy = uyt + ayt (2.56)
2 

Substituting in the relevant values and simplifying: r 
2 10gr g 2 r = t + t (2.57)
3 27 2 r 

g 10gr 22t + t − r = 0 (2.58)
2 27 3 

This is a quadratic equation in t. The algebra might get a bit messy 
now, so make sure you are careful! Using the quadratic formula: r r ! 

1 10gr 10gr 4gr 
t = × − ± + (2.59) 

g 27 27 3 r r 
10r 10r 4r 

= − ± + (2.60)
27g 27g 3gr r 
10r 46r 

= − ± (2.61)
27g 27gr � �√ √ 

= − 5 ± 23 (2.62) 
2r 
27g 

We will choose the positive root solution, as otherwise we will end 
up with a negative value for t. This means that r 

2r �√ √ � 
t = 23 − 5 (2.63)

27g 
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Multiplying this time by the marble’s horizontal velocity ux gives the 
distance it travels in the horizontal direction: r r �√ √ �8gr 2r 

uxt = × 23 − 5 (2.64)
27 27gs 

√ ��√16gr2 
= 23 − 5 (2.65)

272 × g 

4r �√ √ � 
= 23 − 5 (2.66)
27 

Whilst this is the distance the marble travels horizontally, to work 
out how far away from the base the marble lands we need to subtract 
of the distance from where it leaves the sphere. Referring back to√ 
the diagram, since the height of the triangle is 5r/3 and the radius 
of the hemisphere is r, the marble starts a distance !√ √ 

5 5 
r − r = 1 − r (2.67)

3 3 

away from the edge of the base. So, fnally, the distance d the marble 
lands away from the base is !√ 

4r �√ √ � 5 
d = 

27 
23 − 5 − 1 − 

3 
r (2.68) 

√ √ √ ! 
4 23 4 5 5 

= 
27 

− 
27 

+ 
3 
− 1 r (2.69) 

≈ 0.125r (2.70) 

8. Problem 
Consider a toy car going around a loop-the-loop. If the car is going too 
slowly around the loop-the-loop, at some point it will fall of. 

(a) If the car started at rest on a downwards ramp which was initially 
at the same height as the loop, would the car make it around safely? 
Explain why. 

(b) Bob wants to fnd out if it’s possible to do the loop-the-loop with a 
real car. He has built a loop which has a 6 m radius, and his car will 
approach the loop driving along a fat runway. What is the minimum 
speed, in mph, that Bob needs to drive at in order to perform the 
loop-the-loop successfully? 

(c) Is there any reason why Bob shouldn’t go much faster than this 
minimum speed? 

Hint 
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Figure 2.6: A car (black circle) at rest at the top of a downwards ramp which 
is the same height as the loop-the-loop. 

(a) What is the velocity of the car when it gets back to its starting 
height? When will the car have its lowest speed during the loop? 
Can you fnd an expression for the necessary minimum speed to keep 
going around the loop? 

(b) This question is not actually about circular motion – why do the 
normal equation of circular motion not apply in this scenario? Why 
is the speed at the bottom of the ramp diferent to that at the top? 
It may help to model the car as a marble. 

(c) What are the forces a person experiences if they change direction 
suddenly? What could happen to their body if these forces were too 
large? Think about astronauts being trained in a human ‘centrifuge’. 

Solution 

(a) No: by the conservation of energy, the car would climb back to its 
original height with zero kinetic energy. It would then fall straight 
down. In reality, it would lose contact with the track sooner than 
this and so would not even make it to the top of the loop. 

(b) First, we need to determine the minimum velocity at the top of the 
loop such that the car does not fall. We can fnd this condition by 
setting the normal contact force to zero at the top of the loop. This 
means that: 

2mv 
mg = (2.71) 

r 
and so √ 

vmin = gr (2.72) 

If we let the velocity of the car at the bottom of the loop be v0, then 
applying the conservation of energy at the top and bottom of the 
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loop gives: 
1 1 

mv 

where h is the height of the loop. This height is simply the diameter 
of the circle: h = 2r. This means that 

2
0 + 0 (2.73)mvmin + mgh = 

2 2 
2 

2
0 = gr + 4gr = 5gr (2.74)v 

and so p √ 
1 ≈ 38 4mph. 

(c) Yes: the faster Bob travels, the larger the g-force he will experience 
as he goes around the loop. This increases his chances of passing out 
while the car is upside down. 

9. Problem 
A velodrome allows cyclists to travel at high speed around tight corners 
since the track is banked at a steep angle. 

(a) By drawing a force diagram, show why this banking is necessary. 
Determine an expression for the maximum speed a cyclist can travel 
at as a function of the radius r of the corner and the coefcient of 
dynamic friction µ. 

(b) Determine the value of µ required for a bike to travel at 80 kmh−1 

around corners of radius 25 m with a maximum banking angle of 42◦ . 

Hint 

(a) Have you drawn a clear diagram showing all the forces acting on the 
cyclist? In which direction must the centripetal force act? Is this a 
sensible direction to resolve the forces? 

(b) Rearrange your answer for (a) to solve for µ. 

Solution 

(a) Figure 2.7 shows the forces on a bicycle as it travels around a banked 
corner in a velodrome. 

Resolving forces vertically: 

N cos θ − F sin θ − W = 0 (2.76) 

and so, substituting W = mg and F = µN , 

N = 
mg 

N (cos θ − µ sin θ) 
(2.77) 

Resolving forces horizontally: 

5gr = 5 × 9.81 × 6 ≈ 17 ms− (2.75)v0 = 

2mv 
N sin θ + F cos θ = (2.78) 

r 
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Figure 2.7: A diagram showing the forces on a bicycle as it travels around a 
corner banked at an angle θ. 

and so, once again substituting F = µN , 

2mv 
N(sin θ + µ cos θ) = (2.79) 

r 

Substituting equation 2.77 into equation 2.79: 

2mg mv 
(sin θ + µ cos θ) = (2.80) 

cos θ − µ sin θ r 

and so, rearranging for v: s 
(sin θ + µ cos θ) gr 

vmax = (2.81) 
cos θ − µ sin θ 

(b) We want to rearrange equation 2.81 for µ: 

v 2 (cos θ − µ sin θ) = (sin θ + µ cos θ) gr (2.82) � � 
2 µ v 2 sin θ + gr cos θ = v cos θ − gr sin θ (2.83) 

and so 
2v cos θ − gr sin θ 

µ = (2.84) 
v2 sin θ + gr cos θ 

A speed of 80 kmh−1 ≈ 22.2 ms−1 . Plugging in the numbers: 

22.22 × cos 42◦ − 9.81 × 25 sin 42◦ 

µ ≈ ≈ 0.40 (2.85)
22.22 × sin 42◦ + 9.81 × 25 cos 42◦ 
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10. Problem 
Racing cars have spoilers which direct the air fow over the car upwards. 

(a) Explain why this makes the cars ‘heavier’ with reference to at least 
one of Newton’s laws of motion. 

(b) A student suggests that this is a silly design feature, as the heavier 
an object is the slower it will go. What is the physics behind this 
argument, and is it correct? 

(c) Assume that the downforce created from the spoilers is proportional 
2to v , where v is the velocity of the car. If it is possible for a racing 

car of mass 800 kg to drive on the roof of a tunnel provided it is 
travelling faster than 150 mph, determine the value of the constant 
of proportionality. 

Hint 

(a) Newton’s third law is important here. 

(b) Although there is inertial mass and gravitational mass (which just 
so happen to be the same thing), does the weight of the car actually 
increase? 

(c) What is the relationship between the weight of the car and the ‘down-
force’? 

Solution 

(a) By Newton’s third law, if the air is pushed upwards of the spoiler, 
the spoiler must likewise be pushed down by the air. This extra 
downwards force (or downforce) adds to the weight of the car and 
pushes it down. This in turn increases both the normal reaction 
force and the frictional forces. 

(b) The argument is not correct. Whilst the spoiler afects the down-
wards force (and therefore the weight) of the car, the inertial mass 
of the car (that is, the mass relevant to F = ma) does not change. 
This means that it takes the same amount of force to accelerate the 
car with or without a spoiler. 

Since the spoiler increases the weight of the car, the normal reaction 
force N is also increased. The frictional force F between the tyres 
and the road is given by the standard equation 

F = µN (2.86) 

where µ is the coefcient of dynamic friction. This in turn means 
that the spoilers increase the friction between the tyres and the road. 

The more friction there is between the tyres and the road, the more 
grip the car will have. (This is why racing cars often have dry ‘slick’ 
tyres with no grooves on them – to improve grip by maximising the 
amount of contact the tyre has with the road.) This increased grip 
will in turn improve the acceleration of the car. 
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(c) 150 mph ≈ 67 ms−1 . Letting the constant of proportionality be k, 
balancing the gravitational force with the downforce gives: 

mg = kv2 (2.87) 

and so 
mg

k = 
v2 

800 × 9.81 ≈ ≈ 1.75 
672 

(2.88) 

11. Problem 
In Hertford, Hampshire and Hereford, hurricanes hardly happen. How-
ever, if they were to happen, would they likely rotate clockwise, anti-
clockwise or have no preference? 

Hint 
You should piece together the physics behind this phenomenon. Think 
about: 

‹ Most weather patterns are driven by the Sun. 

‹ What is the signifcance of isobars on a weather forecast? 

‹ Where do hurricanes usually occur and why? 

‹ What do the above questions have to do with circular motion? 

‹ What is the Coriolis efect? 

Solution 
This question is about the Coriolis efect: when air travels around the 
Earth, it is subject to the Coriolis force, an apparent force (like the cen-
trifugal force) which appears due to the rotation of the Earth. 

The efect of the Coriolis force can be illustrated by visualising throwing 
a paper aeroplane from the equator northwards. We will neglect any wind 
and any air resistance, and just focus on the efect of the Earth’s rotation. 

A person standing on the equator is rotating faster around the Earth’s core 
than someone standing at the poles, simply due to the geometry of the 
Earth. Likewise, the paper aeroplane which starts at rest at the equator is 
rotating around the Earth’s core faster than if it were more north. Another 
way of expressing this idea is to say that the paper aeroplane has more 
angular momentum than if it were to start more northwards. This angular 
momentum which the paper aeroplane has must be conserved. 

As the paper aeroplane travels northwards, it fies over land which is 
rotating slower than the equator. Since the aeroplane conserves its angular 
momentum, it efectively keeps its rotational velocity around the Earth’s 
core that it had at the equator. The efect of this is that the paper 
aeroplane starts to appear to bend rightwards as it travels over the Earth’s 
surface. 

A similar thought experiment going the other way will show that a paper 
aeroplane which starts of at the North pole and travels southwards will 
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also appear to bend rightwards (in its direction of travel) as it travels over 
the Earth’s surface. In the Southern hemisphere, the paper aeroplane 
would instead bend leftwards. 

The heating of the oceans and land by the Sun causes the air to warm, 
which then circulates following areas of higher and lower pressure. 

Imagine an area of low pressure which develops a little north of the equa-
tor. Higher pressure air will then move towards this patch of low pressure 
from all directions. 

Picturing this with the knowledge that air always bends rightwards as 
it travels in the Northern hemisphere due to the Coriolis efect, we can 
see that the air starts circulating clockwise in the Northern hemisphere. 
On the other hand, air starts circulating anticlockwise in the Southern 
hemisphere. 

This means that if hurricanes were to happen in Hertford, Hampshire and 
Hereford, they would likely rotate clockwise. 

12. Problem 
For an object undergoing simple harmonic motion, it is possible to express 
its velocity as a function of time (as it is simply the time derivative of 
its displacement). Show that an objecting undergoing simple harmonic 
motion has a velocity as a function of displacement is given by p 

v(x) = ±ω A2 − x2 (2.89) 

where all the symbols have their usual meanings. 

Hint 
You should be able to derive the fact that v(t) = −Aω sin (ωt). There is a 
useful trigonometric identity which will help to get rid of the sin and cos 
terms, if you square them. 

Solution 
The displacement of an object undergoing simple harmonic motion is given 
by 

x = A cos (ωt) (2.90) 

where A is the amplitude, ω is the angular frequency and t is time. Dif-
ferentiating with respect to time: 

v = −Aω sin (ωt) (2.91) 

2 A2Squaring both the displacement and the velocity gives x = cos2 (ωt) 
2and v = A2ω2 sin2 (ωt). Recognising the fact that we would like to use 

2the trigonometric identity cos x + sin2 x = 1: 

2v � �
2 x + = A2 cos 2 (ωt) + sin2 (ωt) = A2 (2.92)

2ω 
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Rearranging this gives the fnal result: p 
v(x) = ±ω A2 − x2 (2.93) 

Note that you could equivalently start from the fact that displacement is 
given by x = A sin (ωt) and proceed with the problem in an identical way 
to get the same solution. 

13. Problem 
Imagine that a tunnel is constructed straight through the centre of the 
Earth. If a person were to fall into the tunnel, would they arrive at the 
other end? Describe the motion of the person and either explain why the 
person would not reach the other end or calculate the time taken for the 
person to travel from one end of the Earth to the other. 

Hint 
What happens to the force due to gravity as the person approaches the 
centre of the Earth? As r → 0, does the force not become infnite? What 
efect does this have on their velocity? How fast will they be travelling 
when they get to the centre of the Earth? 

It turns out that we can ignore all the mass at a greater radius from the 
centre of the Earth than the person is at any given point. This is because 
the gravitational pull from all of the material contained within this ring 
exactly cancels out. As the person falls towards the centre of the Earth, 
there is some mass above them, which is now pulling them upwards. But 
this exactly cancels out the pull of the other mass outside radius r. 

Figure 2.8: If the person is at radius r, then the gravitational pull from all the 
mass of the Earth contained outside of this radius exactly cancels out. 

In other words, it is only the mass that is contained within a sphere of 
radius equal to the person’s displacement from the centre of mass that 
contributes to the force of gravity. This means that you only have to 
consider the mass within the person’s radius. 
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Recall that simple harmonic motion occurs if the acceleration of an object 
is proportional to, and in the opposite direction to, the object’s displace-
ment about the equilibrium position. 

Solution 
The person would arrive at the other end – this is a classic example of 
simple harmonic motion. 

It is a fact that it is only the mass that is contained within a sphere of 
radius equal to the person’s displacement from the centre of mass that 
contributes to the force of gravity. 

This leaves a linearly decreasing gravitational feld strength, whereby the 
gravitational force the person is subject to at any one time is: 

mE (r)mp
F = (2.94) 

r2 

where mp is the mass of the person and 

mE (r) = 
4 
πr3ρ (2.95)
3 

is the mass contained within the spher of radius equal to the person’s 
displacement from the centre of the Earth. 

Substituting equation 2.95 into 2.94 gives a force which is linearly depen-
dent on radius: 

4πGmpρ 
F (r) = r (2.96)

3 
The explicit expression for the density of the Earth is 

mass 3ME
ρ = = (2.97)3volume 4πRE 

where ME and RE are the total mass and radius of the Earth. Inputting 
this into equation 2.96 gives: 

GME mpr 
F (r) = (2.98)

R3 
E 

This is the force on the person at any given point, which is also equal to 

F (r) = mpa (2.99) 

by Newton’s second law. Equating equations 2.98 and 2.99 and solving 
for the acceleration: 

GME 
a = − r (2.100)

R3 
E 

Since this acceleration is proportional to the person’s displacement r and 
in the opposite direction to it, the person is subject to simple harmonic 
motion. The defning equation of simple harmonic motion 

a = −ω2 x (2.101) 
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leads to an angular frequency of s 
GME

ω = (2.102)
R3 

E 

Since 
2π 

ω = 2πf = (2.103)
T 

this leads to a time period of s 
R3 

ET = 2π (2.104)
GME 

Plugging in standard values for the constants: r 
(6.4 × 106)3 

T = 2π ≈ 5100 seconds ≈ 85 minutes (2.105)
6.7 × 10−11 × 6 × 1024 

Note that this is the time it would take to start from one end, fall to the 
other end and then return to your original starting point. This means 
that the time it would take for the person to travel from one end of the 
Earth to the other is half of this, or roughly 42 minutes. 

14. Problem 
In The A-Team flm, Hannibal and his team fnd themselves plummeting 
towards the Earth in a tank with only one of its three parachutes attached. 
This would not be a soft landing! However, there is a lake about half a 
mile away from their landing spot. The team attempt to ‘fy the tank’ to 
the lake by fring shells horizontally. This question will examine whether 
this is pure Hollywood or based in sound physics. 

For the team to be successful, how high up must they be when the execute 
this plan? You may ignore the efects of air resistance in the horizontal 
direction. 

The following data may be useful: 

‹ Projectile mass: 10 kg 

‹ Muzzle velocity: 1750 ms−1 

‹ Time between shots: 3.5 s 

‹ Tank mass: 22 000 kg 

‹ Terminal velocity: 33 mph 

Hint 
Make as many simplifying assumptions as you can. How important is it 
that the mass of the tank will decrease? 

Can you smooth out the force? Instead of having many impulses every 
3.5 s, consider fnding an average continuous force. 
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If you can fnd a constant acceleration then regular SUVAT equations can 
be applied. 

Solution 
Since force is the rate of change of momentum, the average continuous 
force provided to the tank by fring the shells is 

∆p 1750 × 10 
F = = = 5000 N (2.106)

∆t 3.5 

By Newton’s second law, this provides an average (constant) acceleration 
of 

F 5000 
a = = = 0.25 ms−2 (2.107) 

m 20000 

where we have assumed that m, the mass of the tank, is constant given 
the fact that the mass of the projectiles being fred is much less than the 
mass of the tank. 

Now we can use a standard SUVAT equation 

1 2 s = ut + at (2.108)
2 

in the horizontal direction to work out the time of fight. Assuming that 
the initial horizontal velocity of the tank is u = 0ms−1 and plugging in a 
horizontal distance of s ≈ 800 m, the time taken by the tank to fy to the 
lake is r r 

√2s 2 × 800 
t = = = 6400 = 80 s (2.109) 

a 0.25 

Now all that is left to do is fgure out how far vertically the tank falls in 
this time. This will be the height the team must be when they execute 
this plan in order to get to the lake before crashing into the ground. 

Using the fact that 33 mph ≈ 14.75 ms−1: 

distance = speed × time = 14.75 × 80 ≈ 1200 m (2.110) 

It is worth refecting on our assumptions: the tank will inevitably lose 
mass due to the 80/3.5 ≈ 23 projectiles fred. We have also neglected the 
efect of sideways air resistance and any wind. Finally, we assumed that 
the tank’s initial horizontal velocity was zero; this may not be the case 
due to the initial horizontal velocity from the plane. 
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Chapter 3 

Waves and Optics 

3.1 Introductory Problems 

1. Problem 
A triangular glass prism sits on a table pointing upwards. A beam of 
coloured light is directed horizontally near the top of the prism, as shown 
in Figure 3.1. What happens to the light beam at the prism? 

(a) It is bent upwards 

(b) It is bent downwards 

(c) It continues horizontally 

(d) It depends on the colour of the light 

Figure 3.1: A beam of coloured light directed horizontally towards the top of a 
triangular glass prism. 

Hint 
Read the question carefully – it is a beam of coloured light, for example 
red light or green light. Remember the dispersion of white light by a 
prism. What happens to the white light and why? Does it disperse by a 
lot or only by a little? Draw a ray diagram. 

Solution 
No matter the colour, any light beam will follow the normal rules of refrac-
tion and bend towards the normal when entering a more dense medium. 
This means that the correct answer is (b): it is bent downwards. 
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2. Problem 
A beam of light is incident from a vacuum onto a medium at an angle θ to 
the normal of the boundary. The refracted and partially refected beams 
happen to form a right angle. Find an expression for the refractive index 
of the medium. 

Hint 
Draw a digram showing refection and refraction at the surface. Label 
angles (both known and unknown). Use Snell’s law and remember that 
sin (90◦ − θ) = cos θ. 

Solution 
See Figure 3.2. 

Figure 3.2: A beam of light incident from a vacuum onto a medium at an angle 
θ to the normal of the boundary. 

If the angle of refraction is θr, then 

θ + θr = 90
◦ (3.1) 

and so 
θr = 90

◦ − θ (3.2) 

Let the refractive index of the medium be n. Since the refractive index of 
a vacuum is 1, using Snell’s law: 

n sin θr = sin θ (3.3) 

If we rearrange this equation for n and substitute for θr using equation 
3.2, this gives our fnal answer: 

sin θ sin θ sin θ 
n = = = = tan θ (3.4)

sin θr sin (90◦ − θ) cos θ 

3.2 Further Problems 

3. Problem 
This question concerns total internal refection, optical fbres, and refrac-
tion. You may assume that the refractive index of glass is larger than that 
of water, and that the refractive index of water is larger than that of air. 
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(a) Explain what is meant by the phrases total internal refection and 
critical angle. (You are encouraged to use a diagram to explain your 
answer.) 

(b) Derive an equation relating the critical angle and the refractive in-
dices of two materials, n1 and n2, where n2 < n1. 

(c) An optical fbre is usually made of two materials, a core and a 
cladding, as shown in Figure 3.3 (not drawn to scale). 

Figure 3.3: A diagram of an optical fbre. 

Light may only be transmitted along the fbre if the incident angle of 
the light is less than a maximum angle θmax. By using your equation 
from above and Snell’s Law, or otherwise, derive an expression for 
θmax in terms of the core and cladding refractive indices only. 

Hint 

(a) Draw a clear diagram to illustrate total internal refection and critical 
angle with labels. 

(b) For the derivation, start by using Snell’s law. What is the angle of 
refraction for light if the angle of incidence is equal to the critical 
angle? Optical fbres contain a core and cladding where ncore > 
ncladding. This allows total internal refection. 

(c) Redraw the ray diagram for light entering the cone from air at θmax. 
Show the refraction the light undergoes as it enters the core, and 
then as it hits the cladding at the critical angle (the light is just 
transmitted at this point). Label angles of incidence, refection and 
refraction using the standard formulae and trigonometry. 

Use your derived critical angle formula at the point where the light 
hits the cladding, and use Snell’s law where the ray enters the core 
with the relevant refractive indices. Also remember standard trigono-
metric rules and substitutions. 

Solution 
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(a) See Figure 3.4. 

Figure 3.4: A diagram illustrating the concepts of total internal refection and 
critical angle. 

Imagine a light ray travelling in a more dense medium approaching 
a boundary with a less dense medium. Depending on the angle of 
incidence and the respective refractive indices, some of the light may 
be refected back into the more dense medium and some of the light 
may be refracted into the less dense medium. 

Total internal refection is the complete refection of light within a 
medium, and occurs if the angle of incidence is greater than the 
critical angle. 

The critical angle is the minimum angle of incidence at which rays 
sufer total internal refection. 

(b) First consider Snell’s law: 

n1 sin θ1 = n2 sin θ2 (3.5) 

At the critical angle θc, this becomes: 

n1 sin θc = n2 sin 90
◦ (3.6) 

and so 
n2

sin θc = (3.7) 
n1 

(c) Consider Figure 3.5. 

At point A: 
nclad 

sin θc = (3.8) 
ncore 

At point B, using Snell’s law: 

n1 sin θ1 = n2 sin θ2 (3.9) 
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Figure 3.5: A diagram showing the passage of light through the optical fbre. 

θ1 = θmax and θ2 = 90
◦ − θc. Approximating the refractive index of 

air as n1 = 1 and letting n2 = ncore: 

sin θmax = ncore sin (90
◦ − θc) (3.10) 

= ncore cos θc (3.11) q 
= ncore 1 − sin2 θc (3.12) 

Substituting for sin θc using equation 3.8: s � �2 q
nclad 2 2sin θmax = ncore 1 − = ncore − nclad (3.13) 
ncore 

and so our fnal answer is: �q � 
n2 2θmax = sin

−1 − n (3.14)core clad 

4. Problem 
In an optical fbre, light can travel directly down the middle of the fbre. 
Alternatively, a meridional ray is one which bounces of the walls of the 
fbre yet stays in a single plane. The minimum angle a ray can bounce at 
is controlled by the critical angle. For a glass fbre with a core index of 
1.500, a cladding index of 1.496 and length 1 km: 

(a) Calculate the maximum path length for the meridional ray. 

(b) Hence calculate the time diference for this ray and a ray which passes 
straight through. 

(c) If square (in time) pulses of light are used to send information down 
the fbre, calculate the maximum rate at which information can be 
sent. 
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Hint 

(a) Use refractive indices to calculate the critical angle for the optical 
fbre, remembering that ncore > ncladding and substituting as appro-
priate. 

Do you need to be concerned about the multiple refections to cal-
culate the maximum path length, or can you make a straightforward 
assumption? 

The maximum path length will occur when the angle of incidence 
is equal to the critical angle at the cladding, at the far end of the 
optical fbre. Use a triangle and trigonometry to fnd the maximum 
path length. 

(b) When calculating the time diference, remember that you will need 
to use the speed of light in the medium, which you can determine 
using the refractive index of the medium. 

(c) Draw a square pulse. What assumption can you make in terms of 
the size of the gap needed to avoid interference but send information 
at a maximum rate? Use this to calculate the number of pulses per 
second (which is the maximum rate at which information is sent). 

Solution 

(a) The maximum path length occurs if the ray hits the cladding at the 
critical angle. From a previous question we know that the critical 
angle is given by 

nclad 1.496 
sin θc = = (3.15)

1.500 

and so θc = 85.81
◦ . 

Consider the triangle shown in Figure 3.6. 

ncore 

Figure 3.6: A helpful triangle. Angle θ = 85.81◦ and length l corresponds to 
the maximum path length. 
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The maximum path length is given by the hypotenuse of the triangle, 
and so 

1 1.500 
maximum path length = = = 1.002 67 km (3.16) 

sin 85.81◦ 1.496 

(b) The path diference ∆d between two rays is 

∆d = 1.00267 − 1 = 0.002 67 km = 2.67 m (3.17) 

The time diference is then given by ∆t = ∆d/cs, where cs is the 
speed of the ray in the medium. Since the refractive index n of 
a medium and the speed of light cs within the same medium are 
related by 

c 
n = (3.18) 

cs 

where c is the speed of light in a vacuum, this means that 

c 
cs = (3.19)

1.500 

Plugging in c ≈ 3 × 108 ms−1 then gives 

2.67 1.500 
∆t = ≈ 2.67 × ≈ 1.335 × 10−8 s (3.20) 

cs 3 × 108 

(c) A square pulse is depicted in Figure 3.7. 

Figure 3.7: A square pulse. 

We can assume a minimum gap of ∆t = 1.335 × 10−8 s between 
pulses, regardless of the peak length. For there to be no overlap, the 
maximum rate is simply the number of pulses per second: 

−1maximum rate = 
1 

= 7.49 × 107 s (3.21)
1.335 × 10−8 

or around 75 million pulses per second. 

5. Problem 
In a particle physics experiment, light from a particle detector is to be 
collected and concentrated by refecting it between a pair of plane mirrors 
with angle 2α between them, as shown in Figure 3.8. A faint parallel beam 
of light consisting of rays parallel to the central axis is to be narrowed 
down by refection of the mirrors, as shown by the single ray illustrated, 
for which angle a = α. 
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Figure 3.8: A parallel beam of light being refected between a pair of plane 
mirrors. 

(a) Determine angles b, c, d and e in terms of angle α. 

(b) Explain what happens after several refections of the light down the 
mirror funnel. 

(c) If α = 10◦ , what is the total number of refections between the mirrors 
that will be made by a beam of light entering parallel to the axis of 
symmetry as shown? 

(d) If the mirrors are replaced by an internally silvered circular cone 
whose cross-section is the same as that shown above, why will this 
not make any diference to the calculation given above for the plane 
angled mirrors with a beam of light parallel to the axis? 

(e) An ear trumpet was a device that was used to collect sound and focus 
it into the ear. It was a cone about 0.5 m long with an angle 2α of 
about 30◦ . The sound passing into the device would typically have 
a frequency of 400 Hz and a speed of 330 ms−1 . Why is the model 
above that we have used for light not valid for an ear trumpet used 
to collect sound? 

Hint 

(a) Draw your own ray diagram. Angle a is given. Angle b should be 
straightforward to fgure out using the law of refection. Angles c 
and d are also refections but are as yet unknown. Use standard 
trigonometry rules to do with angles on a straight line and angles in 
a triangle. You will end up with a set of simultaneous equations: see 
what you can eliminate and solve for c, d and e. 

(b) Consider the pattern in the angles which you have just calculated. It 
may help to redraw the diagram, adding more refections. 

(c) Once again, use the pattern in the angles. 

(d) Draw a cone. Does anything change? 

(e) Calculate the wavelength of the sound waves. How does this compare 
to the size of the cone? What does this tell you? 

Solution 
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(a) Consider Figure 3.9. 

Figure 3.9: A parallel beam of light being refected between a pair of plane 
mirrors with additional angles labelled. 

Since the angle of incidence is equal to the angle of refection, b = 
a = α. 
For the same reason, c = d. Let the angle between angles c and d be 
angle x. Then 

x + e + b = 180◦ (3.22) 

due to angles in a triangle, and 

c + x + d = 180◦ (3.23) 

due to angles on a straight line. Finally, let the angle which forms a 
straight line with angle e be angle y. Then 

y + e = 180◦ (3.24) 

due to angles on a straight line, and 

2α + d + y = 180◦ (3.25) 

due to angles in a triangle. 

Equations 3.22–3.25 form a set of simultaneous equations. Although 
there are four equations but six unknowns, the facts that c = d and 
b = α brings the number of unknowns down to four (not counting α 
as an unknown, since the fnal answers will have to be given in terms 
of α). These can be solved in the usual way to get: 

b = α (3.26) 

c = 3α (3.27) 

d = 3α (3.28) 

e = 5α (3.29) 

(b) After several refections of the light down the mirror funnel, the angle 
of incidence becomes greater than 90◦ and so the ray refects back 
out of the opening. 
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(c) The refections of the sides follow the pattern a = α, c = 3α, e = 5α 
and so on. So in this case, a = 10◦ , c = 30◦ , e = 50◦ , and then the 
next two refections will be of angles 70◦ and 90◦ . 

After this point, the ray will refect back (following the same path 
for this particular angle). This results in a total of 4 + 1 + 4 = 9 
refections. 

(d) This would not make a diference since the incident ray, the normal 
and the refected ray all lie in a plane containing the axis of symmetry. 

(e) The sound waves would have a wavelength of 

v 330 
λ = = ≈ 0.8 m (3.30)

f 400 

Since the wavelength of the sound waves is similar to the size of the 
trumpet aperture, difraction will be important and needs to be taken 
into account. 
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3.3 Extension Problems 

6. Problem 
Consider the diagram in Figure 3.10. Indicate clearly the position and 
nature of the image formed by the mirror. Draw rays corresponding to 
light coming from the open circle, and mark any relevant angles. 

Figure 3.10: Indicate clearly the position and nature of the image formed by 
the mirror. Draw rays corresponding to light coming from the open circle, and 
mark any relevant angles. 

Hint 
Use a ruler to draw a ray diagram – what type of image is formed in a 
mirror? 

Solution 
The solution is presented in Figure 3.11. Angles i and r denote the angles 
of incidence and refection respectively. 

7. Problem 
A parallel sided slab of medium B and refractive index nB is sandwiched 
between two slabs of medium A of refractive index nA. A beam of light 
passes from A through B and into A on the other side. If the beam is 
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Figure 3.11: The solution to the task in Figure 3.10. Angle i is the angle of 
incidence and angle r is the angle of refection. 

incident on B at an angle of θ to the normal, what is the angle to the 
normal of the light beam in A after it has left B? � � 

−1 nA sin θ(a) cos nB 

(b) θ � � 
n sin θA(c) sin−1 
2 

2n� B � 
nA sin θ(d) sin−1 

nB 

nA(e) θ nB 

Hint 
Find the refraction angle as the light beam leaves the second surface (going 
from B to A). Draw a ray diagram and label refractive indices and angles. 
Use Snell’s law and the alternate angle rule. 

Solution 
See Figure 3.12. 

Snell’s law gives us two equations: 

nA sin θ = nB sin θ1 (3.31) 

nB sin θ2 = nA sin θ3 (3.32) 

Since θ1 and θ2 are alternate angles, θ1 = θ2. This means that 

nA sin θ = nA sin θ3 (3.33) 

and so θ3 = θ. So the correct answer is (b). 
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Figure 3.12: A beam of light passing through multiple media. 

8. Problem 
A parallel beam of monochromatic light, initially travelling in a direction 
above the horizontal, enters a region of atmosphere in which the refractive 
index increases steadily with height. Which of the graphs in Figure 3.13 
represents the path of the beam of light? 

Figure 3.13: Which of these graphs represents the path of the beam of light? 

Hint 
Make sure you pay attention to the fact that the refractive index increases 
with height. Think about the atmosphere consisting of many thin layers 
of diferent refractive indices, with each layer having a refractive index 
slightly greater than the one below. Draw a diagram showing refraction 
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through one layer, and then consider multiple layers. 

Solution 
Treat the atmosphere as a set of small slabs. Since the refractive index 
increases with height, as the light travels up through one slab that its path 
will look roughly like Figure 3.14. 

Figure 3.14: Light refracting as it passes from one slab to another. 

From Snell’s law: 
n1 sin θ1 = n2 sin θ2 (3.34) 

and so since n2 > n1, sin θ1 > sin θ2. This in turn means that θ1 > θ2 

and so the ray bends upwards. In the limit where the small slabs have 
negligible thickness, this bending towards the normal becomes a smooth 
curve. This means that graph B is correct. 
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9. Problem 
A narrow beam of light is incident normally upon a thin slit. The light 
that passes through is spread out by difraction. The thin slit is then 
immersed in a container of water. The beam of light is shone through 
the water and is again at normal incidence to the slit. The spread of the 
difracted beam of light in water will be: 

(a) The same as in air 

(b) Difraction will not occur in water 

(c) Less spread out than in air 

(d) More spread out than in air 

Figure 3.15: A narrow beam of light incident normally upon a thin slit in water. 

Hint 
Consider how the refractive index of water changes the refraction – and 
therefore difraction – of light through the slit. 

Solution 
The refractive index of water is higher than that of air. When light passes 
between media, its frequency stays the same. Since 

wave speed = frequency × wavelength (3.35) 

and light’s speed decreases when entering a more dense medium such as 
water, the wavelength of light will be higher in water than in air. 

Difraction is more efective on shorter wavelengths of light than longer 
wavelengths. Hence the spread of the difracted beam in water will be less 
spread out than in air. The correct answer is (c). 
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10. Problem 
Figure 3.16 shows two mirrors X and Y, and a solid object with white 
spots at P and Q. 

Figure 3.16: Two mirrors X and Y and a solid object with white spots at P and 
Q. 

(a) An observer at A sees an image of P refected in mirror Y. Mark R, 
the position of this image, and draw a ray from P to the observer at 
A. 

(b) In which mirror would an observer at A see an image of spot Q? 
Mark S, the position of this image. 

(c) An observer at B can see an image of P resulting from refections at 
both mirrors. Draw a ray of light from P to B which enables this 
image to be seen. 

Hint 
Consider where refection occurs when a ray travels between two points, 
and where the observer sees the image. Label the diagram carefully. 

Solution 
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Figure 3.17: The same diagram as in Figure 3.16 but labelled to illustrate the 
answers to the question. 

11. Problem 
A fsherman listens to the radio as he sits on the bank waiting for a fsh to 
bite. The sound is also heard by the fsh and the path of the sound waves 
entering the water is shown in Figure 3.18. 

(a) Describe what happens to the frequency, wavelength and speed of 
sound as it moves from air to water. 

(b) The fsherman’s radio has two speakers, as shown in Figure 3.19. 

Sketch a diagram illustrating how destructive interference between 
sounds from the two speakers can occur when the radio is playing 
a note of a single frequency, assuming that the waves from the two 
speakers start in phase. 

Hint 

(a) Which property of waves remains invariant as waves travel between 
media? What does the path of the sound waves tell you about the 
waves’ speed? 
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Figure 3.18: The path of the sound waves entering the water. 

Figure 3.19: The speaker of the fsherman’s radio. 

(b) If the waves start in phase, how they can end in antiphase and thus 
result in destructive interference? 

Solution 

(a) As sound moves from air to water, its frequency remains the same. 
What happens to its speed can be determined in at least two ways: 

‹ In Figure 3.18, the sound waves bend away from the normal. 
This means that the speed of sound increases in water. 

‹ Sound waves travel through a medium via the vibrations of molecules. 
Since the molecules in water are closer together than the molecules 
in air, sound must travel faster in water than in air. By a similar 
argument, sound waves travel even faster through solids. 

Finally, since 

wave speed = frequency × wavelength (3.36) 

the wave’s wavelength also increases. 

(b) See Figure 3.20. 
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Figure 3.20: A diagram illustrating how destructive interference can occur be-
tween sounds from the two speakers. 

12. Problem 

(a) Intensity decays as one moves further away from a source, due to the 
rays diverging. If I is the intensity and r is the distance from the 

nsource, then I ∝ r for what value of n? 

(b) Rayleigh scattering is an efect that causes many optical phenomena. 
It is caused by the scattering of light by small particles, such as 
molecules that make up the air in the atmosphere. 

If a beam of intensity I0 and wavelength λ interacts with one of 
these particles, then the intensity of the light scattered at an angle θ 
is proportional to 

I0λ
m r nα6(1 + cos 2 θ) (3.37) 

where r is the distance from the scattering particle and α is the 
diameter of the scattering particle. The relationship between the 
intensity of the scattered light (for a given wavelength) with the 
distance from the scattering particle is the same as for a point source. 
By considering the dimensions of the quantities involved, what is m 
to one signifcant fgure? 

Hint 

(a) Does intensity increase or decrease with distance? Can you remember 
what kind of law it follows? Other examples of this kind of law include 
Newton’s law of gravitation and Coulomb’s law. 

(b) Find the dependence of intensity on wavelength using dimensional 
analysis by using n from part (a). What are the units? Does it 
matter if you don’t know the units for intensity? 

Solution 

(a) Intensity follows an inverse square law, so 

1 
I ∝ 

r2 
(3.38) 

and n = −2. 
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(b) Letting the (dimensionless) constant of proportionality be k, equation 
3.37 tells us that the intensity of light scattered at an angle θ is 

I = kI0λ
m r −2α6(1 + cos 2 θ) (3.39) 

where we have substituted the fact that n = −2. Since λ, r and α 
all have units of length whilst cos2 θ is dimensionless, analysing the 
units of equation 3.39 gives 

= ILm−2+6I = ILmL−2L6 (3.40) 

where (with a slight abuse of notation) I represents the units of 
intensity and L represents the units of length. Since the units of 
length on both sides of the equation must be equal to each other: 

0 = m − 2 + 6 (3.41) 

and so m = −4. 

13. Problem 
A glass prism of refractive index n = 1.40 has a triangular cross section 
with two angles of 45◦ . The prism foats on some mercury with its largest 
side of length l = 45.0 cm facing downwards and a vertical depth of h = 
2.50 cm submerged. 

Figure 3.21: A triangular glass prism foating on some mercury. 

(a) A monochromatic beam of light, entering the glass parallel to the 
mercury surface, internally refects of the bottom face of the prism 
due to the presence of the mercury. What is the maximum height of 
the incident beam above the mercury surface such that the beam can 
leave on the other side of the prism, parallel to the mercury surface? 

(b) The prism is then placed on top of a diferent, clear fuid of the same 
density and foats. What is the maximum refractive index of the fuid 
that will allow the light to travel along the same path as in part (a)? 
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Hint 

(a) Add rays to the diagram and label known and unknown values. How 
do we know that the angle of incidence as the light enters the prism 
is 45◦? Use Snell’s law to fnd the angle of refraction. Can you spot 
two similar triangles? 

(b) You want to fnd a limiting case for total internal refection. Can you 
think of or derive an equation linking θ, nliquid and nprism? 

Solution 

(a) See Figure 3.22. 

Figure 3.22: A beam of light entering the triangular glass prism parallel to the 
mercury surface. 

This represents the critical case for the light entering the prism, where 
the refected light exists and travels along the surface of the mercury. 

We want to fnd x and we are told that l = 45 cm and h = 2.5 cm. 
From the diagram, we have two similar triangles: one on the right 
with base b and height h, and another on the left with base l − b and 
height h + x. 

We also know, due to the angles in the prism, that the angle of 
incidence as the light enters the prism and the angle of the light’s 
exit out of the prism are both 45◦ . 

We can use Snell’s law to fnd the angle of refraction θr as the light 
enters the prism. Assuming that the refractive index of air nair ≈ 1: 

sin 45◦ = n sin θr (3.42) 

and so θr = 30.34
◦ . 

This allows us to fgure out angle δ in the left hand triangle: 

δ = 180◦ − 45◦ − 90◦ − θr = 14.66
◦ (3.43) 
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Figure 3.23: A helpful triangle. δ = 14.66◦ and α = 120.34◦ . 

This, in turn, allows us to fgure out the top angle in the right hand 
triangle as 180◦ − 45◦ − δ = 120.34◦ . 

Focusing in on the right hand triangle in Figure 3.23, we can use the 
sine rule to fgure out length b: 

h b 
= (3.44)

sin 45◦ sin 120.34◦ 

and so 
h sin 120.34◦ 

b = ≈ 12.06 cm (3.45)
sin 45◦ 

Since the left hand triangle and right hand triangle are similar: 

h + x l − b 
= (3.46)

h b 

and so fnally 
h(l − b) 

x = − h ≈ 4.33 cm (3.47)
b 

(b) This is very similar to part (a), with the main diference being that 
we now want a limiting case for total internal refection. This occurs 
when 

nliquid 
sin θ = (3.48) 

nprism 

and so we wish to fnd 

nliquid = nprism sin θ = 1.4 × sin θ (3.49) 

All that is left to do is to fnd the angle θ. Since we fgured out that 
δ = 14.66◦ in the previous part, this means that 

θ = 90◦ − δ = 75.34◦ (3.50) 

and so fnally 
nliquid = 1.4 × sin 75.34◦ ≈ 1.35 (3.51) 
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14. Problem 
On roads, devices known as cat’s eyes are used to refect light from a car’s 
headlights back towards the driver. These are loosely based on how light 
that enters a cat’s eye will be refected back out in a similar direction, so 
the eye will often seem to glow at night. 

One type of cat’s eye is created using a sphere of glass, with a curved 
mirror over half of its surface. Light entering the sphere is refected of 
the mirror and exits the sphere travelling in the exact opposite direction 
to its direction of travel before entering the sphere (that is, at the same 
angle to the horizontal). 

(a) A beam of light is incident on the surface of the sphere at an angle of 
θi = 4.58

◦ to the normal of the sphere at that point. If the refractive 
index is n = 1.54, what is the angle through which the incident beam 
deviates as it is refracted at this frst surface? This is the angle 
between its original direction and its new direction. 

(b) Consider an idealised version of the cat’s eye, whereby the entire 
sphere has a refractive index n. The defection of the beam inside 
the sphere will depend on this refractive index. θi is the angle of 
incidence of the beam on the sphere and θr is the angle of refraction 
as the beam enters the sphere. What is the total defection of the 
beam once it has emerged from the sphere, assuming it only refects 
from the mirror once? 

(c) Assuming that θi and θr are small so that the approximation sin θ ≈ θ 
holds, what refractive index would be needed for the beam that has 
left the sphere to be moving in exactly the opposite direction to the 
beam before entering the sphere? 

Hint 

(a) Draw a ray diagram and use Snell’s law. Note that the question does 
not ask for the angle of refraction but the angle of deviation. How 
are the angles of incidence, refraction and deviation related? 

(b) Draw a new ray diagram. Do you already know multiple angles due 
to the symmetry of the problem? Calculate each defection separately 
before adding them together. 

(c) If the beam is moving in exactly the opposite direction, then its total 
defection (as you calculated in the previous part of the question) is 
180◦ . Use Snell’s law and the small angle approximation. 

Solution 

(a) See Figure 3.24. 

Note that the question does not ask for the angle of refraction θr, but 
instead for the angle of deviation, or δ as labelled in the diagram. 
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Figure 3.24: The beam of light refracting after hitting the sphere. 

Using Snell’s law and assuming a refractive index of nair = 1 for air: 

sin 4.58◦ = 1.54 × sin θr (3.52) 

This means that � � 
sin 4.58◦ 

θr = sin
−1 ≈ 2.97◦ (3.53)

1.54 

Since θi = θr + δ, we can work out that 

δ = θi − θr = 4.58
◦ − 2.97◦ = 1.61◦ (3.54) 

(b) See Figure 3.25. 

This shows the path of the beam through the cat’s eye. Due to the 
symmetry of the problem, we can add several more angles, as shown 
in Figure 3.26. 

The total defection of the beam is made up of the three individual 
refections, δ1, δ2 and δ3, at each interface: 

δ1 = θi − θr (3.55) 

δ2 = 180
◦ − 2θr (3.56) 

δ3 = θi − θr (3.57) 

The total defection is therefore 

δ1 + δ2 + δ3 = 180
◦ + 2θi − 4θr (3.58) 
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Figure 3.25: The path of the beam of light through the cat’s eye. 

(c) If the beam is moving in exactly the opposite direction then the total 
defection must be equal to 180◦ . Setting equation 3.58 equal to this 
value then gives: 

180◦ = 180◦ + 2θi − 4θr (3.59) 

Solving for θi then yields 
θi = 2θr (3.60) 

Snell’s law (assuming the refractive index of air to be one) is 

sin θi = n sin θr (3.61) 

and applying the small angle approximation sin θ ≈ θ gives 

θi ≈ nθr (3.62) 

Substituting for θi using equation 3.60 then results in 

2θr ≈ nθr (3.63) 

and so n = 2. 
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Figure 3.26: The path of the beam of light through the cat’s eye, with additional 
angles labelled. 
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