

Geohazards: Attempting to Predict the Unexpected

Dr Ken Amor

Our Perception of Time and Risk

EON	ERA PERIOD		EPOCH		Ма	
				Holocene		0.05
	Cenozoic	Quaternary		Disistense	Late	-0.01
				Pleistocene	Early	- 0.8
		Tertiary		-	Late	- 1.8
				Pliocene	Early	- 3.6
			ne	Miocene	Late	- 5.3
			ē		Middle	-11.2
			ŏ		Farly	-16.4
			ž		Late	-23.7
				Oligocene	Farly	-28.5
			CU	Eocene	Late	-33.7
			Ĕ		Middle	-41.3
			ő		Early	-49.0
			Paleo	Paleocene	Lato	-54.8
					Early	-61.0
-					Larty	-65.0
Phanerozoic	Mesozoic	Cretaceous		Early		-99.0
						- 144
		Jurassic		Middle		- 159
				Farly		- 180
		Triassic		Late		- 206
				Middle		- 227
				Early		- 242
				Late		- 248
		Permian		Early		- 256
				Early		- 290
		Pennsylvanian				- 323
		Mississippian		Lata		- 354
	o	Devonian Silurian		Late		- 370
	÷			Fachy		- 391
	Ň			Late		- 417
	0			Late		- 423
	Pale			Late		- 443
		Ordovician		Late		- 458
				Middle		- 470
				Lariy		- 490
		Cambrian		D		- 500
				P		- 512
				В		- 520
				A		- 543
i.	Late					14194715335494
- N						
Le O	Middle					500
te						-1600
2 2	Farl	Y				1000
						-2500
U E	Late					2500
re	Middle				-3000	
T D					-3400	
A	Early					38007

Two views of the Geological time scale

Faults and Earthquakes

- Earthquakes occur at fault-planes (fractures in the Earth's crust)
- Crustal movement causes stress in rocks which deform elastically (rate of cm/yr)
- Earthquakes occur when internal strength of the rock is exceeded releasing enormous energy (elastic rebound theory)

Types of faults

- In a normal fault, rocks are under tension and move away from each other.
- A reverse fault, the fault blocks are moving towards each other (compressional forces)
- On strike-slip faults the blocks move laterally to each other e.g.San Andreas fault California

Rocks deform elastically

Rocks deform elastically

Lulworth Cove, Dorset

An example of rocks behaving elastically under stress

Real Time Earthquake Map

http://earthquake.usgs.gov/earthquakes/map/

Historical Data – Japanese Cultural context

The Great Wave off Kanagawa by Hokusai

Historical Data – Tsunami stone

Japanese tsunami stones, dating back to the 15th Century.

"Do not build your homes below this point!"

Mapping crustal movements with INSAR

Radar satellites transmit electromagnetic waves illuminating an area of the Earth's surface.

They record the amplitude and phase of the waves that bounce back.

Mapping Crustal deformation

British Earthquakes

http://mapapps2.bgs.ac.uk/earthquakes/home.html

British Earthquakes

http://www.volcano.si.edu/index.cfm

Vesuvius and Pompeii AD 79

Eruption of Vesuvius by William Turner

Vesuvius 1944 Eruption

Vesuvius and Naples - 2013

Mt Vesuvius today - Nasa earth observatory

Mapping volcanoes with INSAR

Small surface displacements (uplift of around 9 cm) of the Longonot Volcano, Kenyan Rift Valley.

The Suswa volcano in the background shows no such uplift at this time

Chelyabinsk Meteor

Dawn 15th Feb 2013 a 17m diameter asteroid enters the atmosphere

Chelyabinsk Meteor

Unrelated to asteroid 2012 DA14 which passed 27,700km from the Earth

Tunguska – 30th June 1908

Exploded 8km above surface

Fig. 4. Vector structure of the taiga devastation area caused by the TM shock wave (Fast, 1967a, b). (1) direction of fallen trees; (2) trajectory

Estimated diameter 50 – 100m 700 square miles of forest devastated

Amazon Rainforest – 13th August 1930

Menace of Meteors Like Huge Bombs from Space

HURRICANE OF FLAME

BLAZING BOLTS FIRE FORESTS

MANKIND'S' LUCK

Another colossal bombardment of the earth from outer space has just been revealed.

Three great meteors, falling, in Brazil, fired and depopulated hundreds of miles of jungle:

NEWS of this catastrophe has only now reached civilisation because the meteors fell in the remote South American wilderness.

It was yet another lucky escape of mankind from an appalling and unrealised peril.

The last great meteor fell in Siberia in 1908, in a district so remote that only last year were details of its destruction given to the world.

Had either of these two meteor falls chanced to sirike a oity in a denselypopulated country, frightful loss of life and damage would have been caused.

"A meteor." Mr. C. J. P. Cave, an expresident of the Royal Meteorological Society, stated recently, "carries in front of it a mass of compressed and incandescent air.

"When it strikes the earth, this air 'splashes' in a hurricane of fire..." The Brazilian meteors are reported (says the Central News) by Father Fidelio, of Aviano, writing from San Paulo de Alivencia in the State of Ama-

UNIVERSITY OF

OXFORD

Peru Sept 2009

An ordinary chondrite survived the passage through the atmosphere. Estimated diameter 2m

Figure 1. The crater 7 days after formation.

Fig. 2. Wide-field photo of the crater.

Frequency of meteorite strikes

A once in 100 year event or a once in 25 year event?

Asteroid map

A crowded solar system!

Armagh observatory

Asteroid detection

Spotting the needle in the haystack

Impact effects calculator

http://impact.ese.ic.ac.uk/

Climate Change Documentary

http://thiniceclimate.org/

CO2 and the carbon cycle – its complicated

Climate projections

Global Warming Projections

Historical weather data –

Data from Met office for Oxford

Testing the astronomical connection

Contact

- enquiries @ earth.ox.ac.uk
- www.earth.ox.ac.uk
- SCIENCE OPEN DAYS
 Wed 26th and
 Thurs 27th June 2013
 Fri 20th Sept 2013

Admissions requirements

EARTH SCIENCES

- A2 Maths required for entry any year, PLUS EITHER Physics OR Chemistry for entry 2013 onwards
- Recommended A levels: Physics , Chemistry, Maths, Biology, Further Maths.
- A2 Geology NOT required.
- Typical offer A*AA or AAAA

