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Probability

1. (a) Let X be a random variable that takes only non-negative values. Show that

P(X ≥ a) ≤ E(X)

a
, for a > 0 ,

where E[ · ] is the expectation operator.

(b) Let Y be a random variable with moment generating function M(t) = E
(
etY
)
.

Show that

P(Y ≥ b) ≤ e−t bM(t) , for b > 0, t > 0 .

(c) Consider a standard normal random variable Z with probability density function

φ(z) =
1√
2π

e−
1
2
z2 , −∞ < z <∞ ,

i.e., Z ∼ N(0, 1). Obtain the moment generating function of ξ = a+ b Z, where
a and b are two constants, and Z is a standard normal random variable.

2. Let X ∼ N(0, 1). Derive the distribution of the random variable X2.

3. Let X1, X2, . . . be a sequence of independently identically distributed random variables
with finite mean µ and finite variance. Show that their partial sums Sn = X1 +X2 +
· · ·+Xn satisfy

1

n
Sn

D−→ µ as n −→∞ .
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Statistics

4. A collection of independent random variables X1, ..., Xn are modelled with a common
distribution defined by

P (Xi ≤ x) =


0 if x < 0

(x/β)α if 0 ≤ x ≤ β
1 if x > β

for fixed positive parameters α, β.

(a) Write down the probability density function of Xi.

(b) Find the maximum likelihood estimators (MLEs) of α and β based on the ob-
servations X1, ., ., Xn.

(c) The length (in mm) of cuckoo’s eggs found in hedge sparrow nests can be mod-
elled with this distribution. For the data

22.0, 23.9, 20.9, 23.8, 25.0, 24.0, 21.7,
23.8, 22.8, 23.1, 23.1, 23.5, 23.0, 23.0

evaluate the MLEs of α and β.

(d) Using your estimated values for α and β, and assuming that cuckoo eggs’ volumes
(in m`) satisfy the relationship V = 3π

32000L
3 (due to ellipticity, where L is the

egg length in mm), give an estimate for the average volume of a cuckoo’s egg,
and for the maximum possible volume of a cuckoo’s egg.

Analysis

5. (a) State Rolle’s Theorem for continuous functions on bounded intervals of R.

(b) Let f : R→ R be such that f has derivatives of all orders and

f(x+ 1) = f(x) for all x ∈ R.

Prove that for each n = 1, 2, . . . there exists yn such that f (n)(yn) = 0.

(c) Let

g(x, y) = (ex + 1) y2 + 2 (ex
2 − e2x−1) y + (e−x

2 − 1) .

(i) For any fixed x ∈ R, show that the equation g(x, y) = 0 admits a solution
y(x) ≥ 0, and limx→0 y(x) = 0.

(ii) Show that there exists a constant ȳ > 0, such that for any fixed y ∈ [0, ȳ],
the equation g(x, y) = 0 admits a solution x(y).
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6. Let p, q ∈ (1,∞), such that 1
p + 1

q = 1. Prove that for any x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ Rn we have

n∑
k=1

|xk yk| ≤

(
n∑
k=1

|xk|p
) 1

p
(

n∑
k=1

|yk|q
) 1

q

,

i.e.,
‖x y‖1 ≤ ‖x‖p ‖y‖q ,

where x y = (x1 y1 , . . . , xn yn), and for r ∈ [1,∞), ‖x‖r = (
∑n

k=1 |xk|r)
1
r .
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Partial Differential Equations

7. Assume V (S, t) is a smooth function that satisfies the partial differential equation

∂V

∂t
+

1

2
σ2 S2 ∂

2V

∂S2
+ r S

∂V

∂S
− r V = 0 , (1)

subject to V (S, T ) = max(S −K, 0), V (0, t) = 0, V (S, t) ∼ S as S → ∞ . Here r,
σ ≥ 0, K ≥ 0 are constants.

The purpose of the exercise is to reduce equation (1), by a suitable change of variables,
to the heat equation and then solve for V (S, t).

(a) Use the following change of variables

t = T − τ/1

2
σ2 , S = K ex , V = K v(x, τ)

to show that (1) becomes

∂v

∂τ
=
∂2v

∂x2
+ (k − 1)

∂v

∂x
− k v , (2)

where k = r/12 σ
2 and v(x, 0) = max(ex − 1, 0) .

(b) Now let
v(x, τ) = eαx+β τ u(x, τ),

for some constants α and β and show that

v(x, τ) = e−
1
2
(k−1)x− 1

4
(k+1)2 τ u(x, τ),

where
∂u

∂τ
=
∂2u

∂x2
for−∞ < x <∞ , τ > 0 ,

with

u(x, 0) = max
(
e

1
2
(k+1)x − e

1
2
(k−1)x, 0

)
(3)

and

α = −1

2
(k − 1) , β = −1

4
(k + 1)2 .

(c) Show that

u(x, τ) = e
1
2
(k+1)x+ 1

4
(k+1)2 τ Φ(d1)− e

1
2
(k−1)x+ 1

4
(k−1)2 τ Φ(d2) ,

where Φ(y) is the normal cumulative density function and

d2 =
log(S(t)/K) + (r − 1

2 σ
2) (T − t)

σ
√
T − t

, and d1 = d2 + σ
√
T − t .

(d) Finally, show that

V (S, t) = S Φ(d1)− e−r (T−t)K Φ(d2) . (4)
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Algebra

8. (a) Consider the system of linear equations Ax = b where A is an m×n real matrix,
and the column vectors x and b are elements in Rn and Rm respectively. Show
that Ax lies in the column space of A for any x. Deduce, or prove otherwise,
that a solution x exists, for given A and b, if and only if the augmented matrix
(A | b) has the same rank as A.

(b) Let t ∈ R and define a matrix At by

At =

 0 1 t
1 t 1
t 1 0

 .

Determine the rank of At for any t ∈ R. Let b ∈ R3. For which t ∈ R does
At x = b have a unique solution?

(c) Determine all vectors b ∈ R3 such that the system of linear equations A0 x = b
has no solution.

(d) Determine 3× 3 invertible matrices P,Q, such that

P A0Q =

 1 0 0
0 1 0
0 0 0

 .
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