Extracting DNA from cheek cells: a classroom experiment for Year 7 upwards

Dr Kathryn Scott

Research Administrator, Zitzmann Group, Department of

Biochemistry

Lecturer in Biochemistry, Christ Church

Extracting Human DNA in the Classroom

- Buccal (cheek cells) can be harvested painlessly and in sufficient quantity to visualise DNA extracted in a simple 4-step protocol
- We will be carrying out an optimised DNA extraction and discussing 'kitchen chemistry' alternatives to the materials used
- DNA extraction based on:
 - R.P. Hearn & K.E. Arblaster. DNA Extraction Techniques for Use in Education (2010) *Biochem Mol Biol Edu* **38(3)** 161-166
 - Original optimised protocol requires a centrifugation step

The Steps in DNA Extraction

3. Protein Digestion

4. DNA Precipitation

Objectives

- Basic level students will
 - Know that DNA is found in the nucleus of cells
 - Learn how to extract DNA from cells and describe the purpose of the key steps of cell lysis, protein degradation and DNA precipitation
 - Observe the appearance of human DNA
- More advanced students will also
 - Learn why buccal cells are a good choice for this experiment
 - Understand the role of SDS and EDTA in cell lysis
 - Understand the role of salt and alcohol in DNA precipitation

Risk Assessment

- Biological samples should only be handled by the person from whom they are taken
- Lysis buffer is an emetic and may cause irritation if in contact with skin or eyes
- Protease solution may cause irritation if in contact with skin or eyes
- Isopropyl alcohol is toxic if consumed and if absorbed through the skin

Step 1 – Cell Harvesting

Step 1 – Harvesting Cells

- Pipette 3 ml water into your drinking cup
- Gently chew the inside of your mouth for 30 seconds
 - Gently blood doesn't help
- Take the water from your tube into your mouth and move it around for 30 seconds
 - Don't swallow the water
- Carefully spit the water back into your cup

Step 2 – Cell Lysis

Step 2 – Cell Lysis

- Add 2 ml of lysis buffer to the test tube you will be using for DNA extraction
- Pour the contents of your cup into the test tube

- Put the cap on your tube
- Gently swirl the tube to mix
 - Shaking shears the DNA leading to short strands at the end of the experiment

Step 3 – Protein Digestion

Step 3 – Protein Digestion

- Add 0.25 ml (~5 drops) of Proteinase K solution to the tube
 - Adding an excess does not cause any problems
- Put the cap on your tube
- Gently swirl the tube to mix
- Place your tube in the 56°C water bath for 10 minutes

Buccal Cells Provide An Excellent Source of DNA

Buccal Cells Provide An Excellent Source of DNA

Cell Lysis Buffer

- 50 mM Tris pH 8.0
 - Buffering for DNA stability and optimal enzyme activity
- 1 % Sodium dodecyl sulfate (SDS)

1 mM Ethylenediaminetetraacetic acid

Cell Lysis – The Structure of SDS Micelles

The Structure of Cell Membranes

(POPC)

pure POPC bilayer

SDS Disrupts Cell Membranes

A concentration of 0.3% - 1% SDS is sufficient to disrupt the membranes of buccal cells

Cell Lysis – What Does EDTA Do?

Ethylenediaminetetraacetic Acid

EDTA Inhibits Enzymes such as DNase I

DNase enzymes are found in most cells

Discussion Point

 Given that the lysis buffer is very similar in composition to shampoo, why does shampoo not lyse our skin cells

Stratified squamous keratinized epithelium

The skin has a protective layer known as the Stratum Corneum. The Stratum Corneum consists of cells that have have lost their nuclei, are embedded in a lipid matrix and are enriched in keratin proteins.

"Epidermal layers" by Mikael Häggström, based on work by Wbensmith - File: WVSOM Meissner's corpusice. JPG at Wikimedia commons

Discussion Point

Keratinized epithelial (skin cells) stained to visualise the DNA (green) and keratin filaments (red)
Note – these cells are from the lower epithelial layers

Keratin has several important roles

- Strengthens Cells
- Acts like a molecular sponge absorbing water if skin is immersed in water for a long time

https://commons.wikimedia.org/wiki/File:Epithelial-cells.jpg

Proteinase K Digestion

- Many proteins precipitate under the same conditions as DNA
 - If we digest the proteins into amino acids then only DNA will precipitate

Protein digestion also removes the histone 'cotton reels' around which the DNA is wrapped

Proteinase K Digestion

- Originally extracted from the fungus Tritirachium album
- Named due to its ability to cleave Keratin
- Many proteinases only cleave after a specific amino acid
 - This leads to the production of large fragments
 - Proteinase K is relatively non-specific, therefore leaving very small fragments
- Is active over a wide range of temperatures
- Is active in the presence of a wide range of additives including
 - SDS
 - EDTA

Step 4 – DNA Precipitation

Step 4 – DNA Precipitation

- Add 0.5 ml (~10 drops) of 0.5 M NaCl to your tube
- Swirl your tube gently to mix
- Hold your tube at 45° and carefully pour in 10 ml of cold isopropyl alcohol
- Leave the tube on the desk for 5 minutes
 - It is very important not to shake the tube
- After 5 minutes DNA should have precipitated at the interface between the lysis buffer and the alcohol
 - Swirling so that a vortex forms can aid precipitation
 - Do not shake or invert the tube

DNA Precipitation

DNA is a highly polar molecule

There is a negatively charged phosphate group joining every base in a DNA chain.

DNA Precipitation

- When DNA molecules and NaCl are dissolved in water the DNA, Na⁺ and Cl⁻ ions will all be surrounded by water molecules
 - Water screens the charges on the DNA and salt ions and prevents them interacting to form strong ionic bonds

- Adding ethanol disrupts the structure of water around the ions, reducing the screening
 - The positively charged Na⁺ ions and negatively charged DNA phosphate groups interact to form strong ionic bonds
 - Many ions coming together leads to precipitation

Variations on the Protocol

- The optimised protocol has proven effective in a classroom setting with students as young as Year 5
- Cost per student is still high
 - SDS £27.50 per 25 g need 1 g per 100 ml buffer (2ml required per student)
 - EDTA £14.50 per 100 g need 29 mg per 100 ml buffer
 - TrisHCl £37.50 per 100 g need 0.8 g per 100 ml buffer
 - 100 ml Tris-EDTA buffer pH 8 (10 mM Tris, 1 mM EDTA) £19.50 (works well)
 - 100 ml 100x Tris-EDTA buffer pH 8 (1 mM Tris, 0.1 mM EDTA) -£18.10
 - ProteinaseK 10 mg £23.00

Variations on the Protocol

Cell harvesting – scraping vs chewing

 Lysis buffer – Tris-EDTA-SDS vs showergel and hand soap

 Enzyme – Proteinase K vs no Enzyme vs contact lens tablets (Subtilisin A)

Ethanol vs Isopropanol

Variations - Cell Harvesting

 Harvesting sufficient buccal cells is essential for successful DNA extraction

Chewing Cheeks

Scraping Cheeks

Isotonic vs non-isotonic solutions

Variations – Lysis Buffer

Variations – Lysis Buffer

Tris pH 8.0, 1% SDS, 1 mM EDTA NO SHAKING

5% Handwash NO SHAKING

5% Shower Gel

Variations Proteinase

 Proteinase K is active under a wide range of conditions but is only available from specialist manufacturers

- Other proteinases are more readily available
 - Subtilisin A contact lens cleaner
 - Less expensive than proteinase K ~£10 for a class of 30
 - not compatible with EDTA, reduced activity in SDS, optimal temperature not stated on packaging
 - Meat tenderiser
 - May contain one of a variety of enzymes
 - May be contaminated with DNase (proved to be the case in our experience)

Variations – Protease

Proteinase K NO SHAKING

Subtilisin A
No EDTA
37°C
NO SHAKING

No Protease Sample 1 NO SHAKING

No Protease Sample 2 NO SHAKING

Variations – Isopropanol vs Ethanol

- DNA is less soluble in isopropanol than ethanol
 - therefore a lower volume of isopropanol is required for DNA precipitation

- Isopropanol is much more toxic than ethanol
 - drinking 10 ml of isopropanol could prove fatal
 - Isopropanol is also readily absorbed through the skin

 The benefit of an increase in yield when using isopropanol must be carefully evaluated against the increased risk

Variations – Isopropanol vs Ethanol

Isopropanol NO SHAKING

Ethanol NO SHAKING

Pitfalls – Harvesting Sufficient Cells is Vital

DNA from a thorough cell harvest.

Tris pH 8.0, 1% SDS, 1 mM EDTA
Proteinase K
Isopropanol
NO SHAKING

DNA from a second round of cell harvesting immediately after the first.

Tris pH 8.0, 1% SDS, 1 mM EDTA
Proteinase K
Isopropanol
NO SHAKING

Pitfalls – Large sample volume

Proteinase K AFTER SWIRLING

No Protease Sample 1 AFTER SWIRLING

No Protease Sample 2 AFTER SWIRLING

Conclusions

- Human DNA extraction can be carried out in a 45 minute lesson for lower years
 - Upper years benefit from an additional theory lesson
- Upper years can relate the practical to a range of different areas of the curriculum
 - Tissue formation
 - DNA structure and function
 - Enzymes
 - Solubility